Chem 116 Lecture 14 Notes 10/21/08 (LL)

iClicker Question

Answer C Rate = $k[CO_2]^2 [O_2]$

Key points about kinetics so far

Collision Theory= For chemicals to react they must collide. The collisions also have to occur at correct orientation

Depends on: Temperature, activation energy, and fraction of collisions that occur at the right orientations of the molecules

Reaction Pathway

Transition state (Activated complex)- Intermediate state between reactants and products where the energy is the highest

Relating energy profiles, activation energies, and speeds of reactions

Activation energy determines the speed of reactions - if the activation energy is higher, the speed is slower

Fastest reaction- Lowest E_a Slowest reaction- Highest E_a

Ranking the reactions in order from fastest to slowest, if the reactions occur at the same temperature and have the same value for A (related to the fraction of collisions at the right orientation)

1, $E_a = 15 \text{ kJ/mol}$ (fastest) 3, $E_a = 20 \text{ kJ/mol}$ 2 $E_a = 24 \text{ kJ/mol}$ (slowest)

Reversing Energy Profile

Rxn 3 is the fastest because it has the lowest E_a

Elementary Reactions

Molecularity- How many particles are involved in the elementary step occurring How many particles involved in elementary step

A→B rate = k [A] – Unimolecular 2A → C = rate [A]₂ - Bimolecular 2 A colliding A = B → D = rate [A] [B] – Bimolecular A+ B Colliding **Rate Determining Step** – Determines how fast reaction goes, reaction only goes as fast as the slowest step

Slow step – Rate determining step

Intermediates – Chemicals that show up on reactant and product side - they get created in one step of the mechanism and then used up again in another step

Fast Equilibrium – Forward and reverse reaction happen at the same rate, and equilibrium gets established faster then the rate determining step

Sample Exercise 14.15 p 606

Step 1: $2NO_2Cl + Cl \rightarrow 2NO_2 + Cl + Cl_2$ Intermediates - Cl $2NO_2Cl \rightarrow 2NO_2 + Cl_2$ Condition 1 adds up to overall reaction

Condition 2- Doesn't add up Rate = K_2 [No₂ Cl] [Cl]

Fast reversible has forward rate = reverse rate of that step Step 2 $NO_2Cl \leftrightarrows NO_2 + Cl$

Forward rate = Reverse rate

 $k_{f} [NO_{2}Cl] = k_{r} [NO_{2}] [Cl]$

- Want to solve for Cl, substitute into overall reaction rate & see if it makes overall reaction rate the same as the experimentally observed rate law

 $[Cl] = k_f [NO_2Cl] / k_r [NO_2]$

Rate = k_2 [NO₂Cl] [Cl]

 k_2 [NO₂Cl] (k_f [NO₂Cl] / k_r [NO₂])

Combined ($k_2 k_f / k_r$) :

 $[NO_2Cl]_2 \ / \ [NO_2]$

-Now it is the same as the experimentally determined rate law